Bayesian inference for multivariate gamma distributions
نویسنده
چکیده
The paper considers the multivariate gamma distribution for which the method of moments has been considered as the only method of estimation due to the complexity of the likelihood function. With a non-conjugate prior, practical Bayesian analysis can be conducted using Gibbs sampling with data augmentation. The new methods are illustrated using artificial data for a trivariate gamma distribution as well as an application to technical inefficiency estimation.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملBayesian Inference for the Multivariate Normal
Bayesian inference for the multivariate Normal is most simply instantiated using a Normal-Wishart prior over the mean and covariance. Predictive densities then correspond to multivariate T distributions, and the moments from the marginal densities are provided analytically or via Monte-Carlo sampling. We show how this textbook approach is applied to a simple two-dimensional example.
متن کاملSimple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models
In this paper we consider a variety of procedures for numerical statistical inference in the family of univariate and multivariate stable distributions. In connection with univariate distributions (i) we provide approximations by finite location-scale mixtures and (ii) versions of approximate Bayesian computation (ABC) using the characteristic function and the asymptotic form of the likelihood ...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 14 شماره
صفحات -
تاریخ انتشار 2004