Bayesian inference for multivariate gamma distributions

نویسنده

  • Efthymios G. Tsionas
چکیده

The paper considers the multivariate gamma distribution for which the method of moments has been considered as the only method of estimation due to the complexity of the likelihood function. With a non-conjugate prior, practical Bayesian analysis can be conducted using Gibbs sampling with data augmentation. The new methods are illustrated using artificial data for a trivariate gamma distribution as well as an application to technical inefficiency estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

Bayesian Inference for the Multivariate Normal

Bayesian inference for the multivariate Normal is most simply instantiated using a Normal-Wishart prior over the mean and covariance. Predictive densities then correspond to multivariate T distributions, and the moments from the marginal densities are provided analytically or via Monte-Carlo sampling. We show how this textbook approach is applied to a simple two-dimensional example.

متن کامل

Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models

In this paper we consider a variety of procedures for numerical statistical inference in the family of univariate and multivariate stable distributions. In connection with univariate distributions (i) we provide approximations by finite location-scale mixtures and (ii) versions of approximate Bayesian computation (ABC) using the characteristic function and the asymptotic form of the likelihood ...

متن کامل

Comparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions

Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004